

Simple Preparation of α-Diazo Esters

Douglass F. Taber,* Ritesh B. Sheth, and Pramod V. Joshi

Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716

taberdf@udel.edu

Received November 9, 2004

The TiCl₄-mediated reaction of an ester with benzoyl chloride results in high yields of the α -benzoylated ester. Diazo transfer of the benzoylated ester utilizing *p*-acetoamidobenzenesulfonyl azide affords the α -diazo ester in good yield. Using this simplified procedure, it is easy to prepare gram quantities of α -diazo esters.

Several years ago, we reported a new method for the diastereoselective construction of cyclopentanes, diazo transfer followed by rhodium-mediated C-H insertion, e.g., 2a to 3a.¹ The key to this approach was the diazo transfer to the ester.

We found² that benzoylation followed by diazo transfer was a general method for the preparation of α -diazo esters. The original procedure was to condense the methyl ester with sodium hydride and methyl benzoate. The yield of this reaction was limited by the continued reaction of the sodium methoxide with the benzoylated ester. Danheiser introduced 2,2,2-trifluoroethyl trifluoroacetate and lithium bis(trimethylsilyl) amide as a more efficient acylation method.³ While effective, this method requires the use of an expensive strong base and cryogenic conditions.

Building on the results of Tanabe,⁴ we have now found that the combination of benzoyl chloride, titanium(IV)

10.1021/jo0480110 CCC: 00202005 American Chemical Society Published on Web 02/24/2005

chloride, triethylamine, and acetonitrile at room temperature converts an ester to the α -benzoylated ester (method A). While this procedure worked well with methyl esters (Table 1), yields were lower with branched esters. We found that the addition of triethylamine *before* the addition of the titanium(IV) chloride provided a buffer against hydrolysis, thereby resulting in higher yields of the α -benzoylated ester (method B). Utilizing either method, we could then effect diazo transfer directly on the crude benzoylated ester. The diazo ester so prepared is usually pure enough to carry directly into subsequent transformations.

α-Diazo esters are versatile intermediates in organic synthesis.¹⁰⁻¹² Rhodium(II) octanoate (5 mol %, CH₂Cl₂, rt) efficiently catalyzes the hetero-H insertion of α-diazo esters (Scheme 1). β-Hydride elimination to form the (Z) alkene **7**¹³ is always a competing side reaction. Nevertheless, N–H, O–H, and S–H insertions proceed smoothly.

We expect that the diazo transfer procedure described here will make α -diazo esters readily available as intermediates for organic synthesis.

Experimental Section

Representative Benzoylation Procedure by Method A. Titanium tetrachloride (2.87 g, 15 mmol) was added over 30 min to a solution of benzoyl chloride (4.26 g, 30 mmol) and methyl tetradecanoate **1a** (2.45 g, 10 mmol) in 10 mL of dry CH_3CN at 0 °C. After 15 min, triethylamine (6.13 g, 60 mmol) was added over 30 min. The mixture was warmed to reflux for 15 min. The mixture was cooled, then partitioned between water and EtOAc

(5) Taber, D. F.; Herr, R. J.; Pack, S. K. J. Org. Chem. **1996**, 61, 2908.

(8) Queignec, R.; Kirschleger, B.; Lambert, F.; Aboutaj, M. Synth. Commun. **1988**, *18*, 1213.

(9) Calo, V.; Nacci, A.; Lopez, L.; Napola, A. *Tetrahedron Lett* **2001**, *42*, 4701.

(10) For examples of Rh-mediated O-H insertion, see: (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds. From Cyclopropanes to Ylides; Wiley-Interscience: New York, 1998. (b) Miller, D. J.; Moody, D. J. Tetrahedron 1995, 40, 10811. (c) Aller, E.; Brown, D. S.; Cox, G. G.; Miller, D. J.; Moody, C. J. J. Org. Chem. 1995, 60, 4449. (d) Sengupta, S.; Das, D.; Sarma, D. S. Tetrahedron Lett. 1996, 37, 8815 (e) Moody, C. J.; Miller, D. J. Tetrahedron 1998, 54, 2257.

(11) For examples of Rh-mediated S-H insertion, see: McKervey,
 M. A. Tetrahedron Let. 1982, 23, 2509.

⁽¹⁾ Taber, D. F.; Hennessey, M. J.; Louey, J. P. J. Org. Chem. **1992**, 57, 436.

 ⁽²⁾ Taber, D. F.; You, K.; Song, Y. J. Org. Chem. 1995, 60, 1093.
 (3) Danheiser, R. L.; Miller, R. F.; Brisbois, R. G.; Park, S. Z. J. Org. Chem. 1990, 55, 1959.

⁽d) Dalmeiser, R. H., Hiller, R. P., Barback, H. C., J. H. (et al., 1990, 55, 1959.
(et al., 1990, 55, 1959.
(f) Yoshida, Y.; Matsumoto, R. H.; Tanabe, Y. *Tetrahedron Lett.*2001, 40, 4227. Tanabe, Y.; Yoshida, Y.; Hayashi, R. *Tetrahedron Lett.*1997, 38, 8727–8730. Tanabe, Y. *Bull. Chem. Soc. Jpn.* 1989, 62, 1917.

⁽⁶⁾ Sundar, N.; Bhat, V. Synth. Commun. 1998, 28, 2311.

⁽⁷⁾ Aitken, R. A.; Armstrong, J. M.; Drysdale, M. J.; Ross, F. C.; Ryan, B. M. J. Chem. Soc., Perkin Trans. 1 **1999**, 5, 593.

⁽¹²⁾ For examples of Rh-mediated N-H insertion, see: (a) Aller, E.; Buck, R. T.; Drysdale, M. J.; Ferris, L.; Haigh, D.; Moody, C. J.; Pearson, N. D.; Sanghera, J. B. J. Chem. Soc., Perkins Trans. **1996**, 24, 2879. (b) Davis, F. A.; Fang, T.; Goswami, R. Org Lett. **2002**, 4, 1599. (c) Buck, R. T.; Clarke, P. A.; Coe, Diane M., Drysdale, M. J.; Ferris, L.; Haigh, D.; Moody, C. J.; Pearson, N. D.; Swann, E. Chem. Eur. J. **2000**, 6, 2160. (d) Ferris, L.; Haigh, D.; Moody, C. J. J. Chem. Soc., Perkin Trans. **1996**, 24, 2885.

⁽¹³⁾ Nakamura, S.; Hayakawa, T.; Nishi, T.; Watanabe, Y.; Toru, T. *Tetrahedron* **2001**, *57*, 6703.

JOC Note

TABLE 1.	Benzoylation	and Diazo	Transfer
----------	--------------	-----------	----------

entry	ester	method	benzoylation yield (%) ^a	diazo transfer yield (%) ^a	overall yield (%) ^b
1	O C ₁₂ H ₂₅ (1a)	A	78	85 ¹	66
2	O C ₉ H ₁₉ (1b) O	А	87	79 ⁵	68
3	C C ₆ H₁3 (1c)	A	84	82	66
4	$C_{5}H_{11}$ (1d)	А	93	84	77
5	~ 0 C_4H_9 (1e)	А	90	84	74
6	_0 (1f)	А	85 ⁶	84 ⁷	69
7	(1g)	В	76 ⁸	82 ⁷	61
8	→0→→→ (1h)	В	68	83	53
9		В	67 ⁹	81	50

^{*a*} Chromatographed yield. ^{*b*} Chromatographed yield without purification of the intermediate α -benzoylated ester.

SCHEME 1

 $(3\times 30~{\rm mL}).$ The combined organic extract was dried (MgSO₄) and concentrated. The residue was chromatographed to give methyl 2-benzoyltetradecanoate **4a** (2.70 g, 78% yield) as an oil: TLC $R_f=0.31$ (95% H/EtOAc). ¹H NMR δ 7.97 (d, J=8.5 Hz, 2H), 7.56 (t, J=8.5 Hz, 1H), 7.48 (t, J=8.5 Hz, 2H), 4.35 (t, J=6.9 Hz, 1H), 3.68 (s, 3H), 2.03 (m, 2H), 1.25 (bs, 20H) 0.88 (t, J=6.6 Hz, 3H); ¹³C NMR δ u: 193.5, 169.0, 131.9, 50.9, 30.3, 28.1, 28.0, 27.9, 27.8, 27.6, 26.1, 21.1 d: 131.9, 127.2, 127.0, 52.5, 12.6; IR 1744, 1689, 1597, 1581, 1448 cm^{-1}; HRMS calcd for C₂₂H₃₄O₃: C, 76.26; H, 9.89. Found: C, 76.30; H, 9.96.

Methyl 2-benzoylundecanoate **4b** (2.65 g, 87% yield) as an oil: TLC $R_f = 0.29$ (95% H/EtOAc); ¹H NMR δ 7.98 (d, J = 7.2 Hz, 2H), 7.59 (t, J = 7.2 Hz, 1H), 7.48 (t, J = 7.2 Hz, 2H), 4.33 (t, J = 7.2 Hz, 1H), 3.67 (s, 3H), 2.00 (m, 2H), 1.24 (s, 14H), 0.87 (t, J = 6.4 Hz, 3H); ¹³C NMR δ u: 193.6, 169.0, 134.7, 50.8, 30.3, 27.9, 27.8, 27.7, 27.6, 26.1, 21.1 d: 131.9, 127.2, 127.1, 127.0, 126.5, 52.4, 12.5; HRMS calcd for C₁₉H₂₈O₃ 304.4295, obsd 304.4297. Anal. Calcd for C₁₉H₂₈O₃: C, 74.96; H, 9.27. Found: C, 74.99; H, 9.29.

Methyl 2-benzoyloctanoate **4c** (2.20 g, 84% yield) as an oil: TLC $R_f = 0.27$ (95% H/EtOAc); ¹H NMR δ 7.98 (d, J = 7.2 Hz, 2H), 7.59 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 7.2 Hz, 2H), 4.33 (t, J = 7.2 Hz, 1H), 3.68 (s, 3H), 2.00 (m, 2H), 1.29 (s, 8H) 0.86 (t, J = 6.4 Hz, 3H); ¹³C NMR δ u: 193.7, 169.0, 134.7, 50.8, 29.9, 27.6, 27.5, 26.0, 20.9 d: 132.0, 127.2, 127.1, 127.0, 52.5, 12.5; HRMS calcd for C₁₆H₂₂O₃ 262.3489, obsd 262.3490. Anal. Calcd for C₁₆H₂₂O₃: C, 73.25; H, 8.45. Found: C, 73.28; H, 8.46.

Methyl 2-benzoylheptanoate **4d** (2.31 g, 93% yield) as an oil: TLC $R_f = 0.25$ (95% H/EtOAc); ¹H NMR δ 7.99 (d, J = 7.2 Hz, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 7.2 Hz, 2H), 4.32 (t, J = 7.2 Hz, 1H), 3.68 (s, 3H), 2.03 (m, 2H), 1.31 (s, 6H) 0.87 (t, J = 6.4 Hz, 3H); ¹³C NMR δ u: 193.7, 169.0, 134.6, 50.9, 30.0, 27.5, 25.8, 20.8 d: 131.9, 127.2, 127.0, 52.5, 12.4; HRMS calcd for C₁₅H₂₀O₃ 248.3220, obsd 248.3221. Anal. Calcd for C₁₅-H₂₀O₃: C, 72.55; H, 8.12. Found C, 72.56; H, 8.14.

Methyl 2-benzoylhexanoate **4e** (2.11 g, 90% yield) as an oil: TLC $R_f = 0.23$ (95% H/EtOAc); ¹H NMR δ 7.98 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.48 (t, J = 7.2 Hz, 2H), 4.34 (t, J = 7.2 Hz, 1H), 3.67 (s, 3H), 2.02 (m, 2H), 1.34 (s, 4H), 0.90 (t, J = 6.4 Hz, 3H); ¹³C NMR δ u: 193.7, 168.9,134.6, 50.8, 28.2, 27.3, 21.0 d: 131.9, 127.2, 127.0, 52.4, 12.2; HRMS calcd for $C_{14}H_{18}O_3$ 234.2951, obsd 234.2996. Anal. Calcd for $C_{14}H_{18}O_3$: C, 71.77; H, 7.74. Found C, 71.79; H, 7.79.

Methyl 2-benzoylhydrocinnamate **4f** (2.28 g, 85% yield) as an oil.⁶ TLC $R_f = 0.17$ (95% H/EtOAc); ¹H NMR δ 7.95 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 7.3 Hz, 1H), 7.45 (t, J = 8.4 Hz, 2H), 7.53 (d, J = 7.5 Hz, 1H), 3.64 (s, 3H), 3.32 (d, J = 7.5 Hz, 2H); ¹³C NMR δ u: 192.9, 168.2, 136.8, 134.6, 33.3 d: 132.1, 127.4, 127.2, 127.0, 125.2, 54.4, 51.0; IR 1739, 1686, 1596, 1495, 1448 cm⁻¹; HRMS calcd for C₁₇H₁₆O₃ 268.3122, obsd 268.3123. Anal. Calcd for C₁₇H₁₆O₃: C, 73.25; H, 8.45. Found: C, 73.28; H, 8.46.

Representative Benzoylation Procedure by Method B. Titanium tetrachloride (2.87 g, 15 mmol) was added over 30 min to a solution of benzoyl chloride (4.26 g, 30 mmol), 1g (1.78 g, 10 mmol), and triethylamine (6.13 g, 60 mmol) in 10 mL of dry CH₃CN at 0 °C. The mixture was warmed to reflux for 15 min. The mixture was cooled and then partitioned between water and EtOAc (3 \times 30 mL). The combined organic extract was dried (MgSO₄) and concentrated. The residue was chromatographed to give ethyl 2-benzoylhydrocinnamate 4g (2.14 g, 78% yield) as an oil:⁸ TLC: $R_f = 0.22$ (95% H/EtOAc); ¹H NMR δ 7.96 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 7.3 Hz, 1H), 7.43 (t, J = 8.4 Hz, 2H), 7.21–7.25 (m, 5H), 4.63 (t, J = 7.3 Hz, 1H), 4.08 (q, J = 7.1 Hz, 2H), 3.32 (d, J = 7.3 Hz, 2H), 1.10 (t, J = 7.1 Hz, 3H); ¹³C NMR δ u: 192.9, 167.7, 136.9, 134.6, 59.9, 33.2 d: 132.0, 127.4, 127.1, 126.9, 125.1, 54.6, 12.4; IR 1736, 1687, 1597, 1495 $\rm cm^{-1}; HRMS$ calcd for $C_{18}H_{18}O_3$ 282.3391, obsd 283.3398. Anal. Calcd for C₁₈H₁₈O₃: C, 76.57; H, 6.43. Found: C, 76.61; H, 6.54.

Isopropyl 2-benzoyl
hydrocinnamate **4h** (2.01 g, 68% yield) as an oil: TLC
 $R_f = 0.26$ (95% H/EtOAc). ¹H NMR δ 7.96 (d,
 J = 8.4 Hz, 2H), 7.53 (d,
 J = 7.3 Hz, 1H), 7.43 (t,
 J = 8.4 Hz, 2H), 7.21–7.25 (m, 5H), 4.94 (m,
 J = 7.5 Hz, 1 H) 4.63 (t,
 J = 7.5 Hz,

1H), 3.32 (d, J = 7.5 Hz, 2H), 1.12 (d, J = 6.4 Hz, 3H), 1.02 (d, J = 6.4 Hz, 3H); ¹³C NMR δ u: 192.9, 167.3, 136.9, 134.7, 33.1 d: 131.9, 127.4, 127.1, 126.9, 125.0, 67.5, 55.0, 19.9, 19.8; IR 1730, 1679, 1597, 1495 cm⁻¹; HRMS calcd for C₁₇H₁₆O₃ 296.3660, obsd 296.3663. Anal. Calcd for C₁₇H₁₆O₃: C, 77.00; H, 6.80. Found: C, 77.07; H, 6.89.

tert-Butyl 2-benzoylhydrocinnamate 4i (2.10 g, 67% yield) as an oil:⁹ TLC $R_f = 0.30$ (95% H/EtOAc); ¹H NMR δ 7.95 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 7.3 Hz, 1H), 7.43 (t, J = 8.4 Hz, 2H), 7.17–7.26 (m, 5H), 4.51 (t, J = 7.2 Hz, 1H), 3.29 (d, J = 7.2 Hz, 2H), 1.28 (s, 9H); ¹³C NMR δ u: 193.3, 166.9, 137.1, 134.9, 80.5, 33.0 d: 131.8, 127.5, 127.1, 127.0, 125.0, 55.7, 26.2; IR 1728, 1686, 1597, 1495 cm⁻¹; HRMS calcd for C₂₀H₂₂O₃ 310.3929, obsd 310.3930. Anal. Calcd for C₂₀H₂₂O₃: C, 77.39; H, 7.14. Found: C, 77.45; H, 7.19.

Diazo Transfer. 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, 0.153 mL, 1.0 mmol) was added over 30 min to a solution of the benzoylated ester (4a, 346 mg, 1 mmol) and 4-acetoamidobenzenesulfonyl azide (248 mg, 1.0 mmol) in 10 mL of dry CH₃CN at 0 °C. After the initial exotherm had subsided, additional 4-acetoamidobenzenesulfonyl azide (124 mg, 0.5 mmol) and DBU (0.076 mL, 0.5 mmol) were added over 30 min. After an additional 30 min, the mixture was partitioned between water and EtOAc (3×30 mL). The combined organic extract was dried (MgSO₄) and concentrated. The residue was chromatographed to give methyl 2-diazotetradecanoate 2a (228 mg, 85% yield) as a yellow oil:¹ TLC $R_f = 0.37$ (95% H/EtOAc); ¹H NMR δ 3.76 (s, 3H), 2.30 (t, 2H, J = 7.4 Hz), 1.53–1.44 (m, 2H), 1.25 (s, 20 H), 0.88 (t, J = 6.6 Hz, 3H); ¹³C NMR δ u: 168.0, 31.9, 29.6, 29.5, 29.3, 29.2, 29.0, 28.7, 27.5, 23.0, 22.6 d: 51.7, 14.0; IR 1702, 1698, 1438 cm $^{-1}$; HRMS calcd for $C_{15}H_{28}O_2N_2$ 268.3995 (240.3861 loss N₂), obsd 240.3862. Anal. Calcd for C₁₅H₂₈O₂N₂: C, 67.13; H, 10.52. Found: C, 67.15; H, 10.55.

Methyl 2-diazoundecanoate **2b** (179 mg, 79% yield) as a yellow oil:⁵ TLC $R_f = 0.35$ (95% H/EtOAc); ¹H NMR δ 3.76 (s, 3H), 2.30 (t, 2H, J = 7.4 Hz), 1.53–1.44 (m, 2H), 1.25 (s, 12H), 0.88 (t, J = 6.6 Hz, 3H); ¹³C NMR δ u: 166.5, 30.3, 27.9, 27.7, 27.2, 26.0, 21.4, 21.1 d: 50.2, 12.5; HRMS calcd for C₁₂H₂₂O₂N₂ 226.3189 (198.3055 loss N₂), obsd 198.3056. Anal. Calcd for C₁₂H₂₂O₂N₂: C, 63.69; H, 9.80. Found: C, 63.72; H, 9.88.

Methyl 2-diazooctanoate **2c** (151 mg, 82% yield) as a yellow oil. TLC: $R_f = 0.32$ (95% H/EtOAc); ¹H NMR δ 3.76 (s, 3H), 2.30 (t, 2H, J = 7.4 Hz), 1.49 (m, 2H), 1.32 (m, 6H), 0.89 (t, J = 6.6 Hz, 3H); ¹³C NMR δ u: 29.9, 26.8, 26.0, 21.5, 21.0 d: 50.3, 12.5; HRMS calcd for C₉H₁₆O₂N₂ 184.2382 (156.2248 loss N₂), obsd 156.2252. Anal. Calcd for C₉H₁₆O₂N₂: C, 58.67;, H, 8.75. Found: C, 58.68; H, 8.77.

Methyl 2-diazoheptanoate **2d** (143 mg, 84% yield) as a yellow oil: TLC $R_f = 0.30$ (95% H/EtOAc); ¹H NMR δ 3.75 (s, 3H), 2.30 (t, 2H, J = 7.4 Hz), 1.53–1.42 (m, 2H), 1.25 (s, 4H), 0.86 (t, J = 6.6 Hz, 3H); ¹³C NMR δ u: 168.1, 31.9, 29.1, 22.0, 21.5, d: 52.3, 14.3; HRMS calcd for C₈H₁₄O₂N₂ 170.2114 (142.1980 loss N₂), obsd 142.1981. Anal. Calcd for C₈H₁₄O₂N₂: C, 56.45; H, 8.29. Found: C, 56.49; H, 8.37.

Methyl 2-diazohexanoate **2e** (151 mg, 84% yield) as a yellow oil: TLC $R_f = 0.28$ (95% H/EtOAc); ¹H NMR δ 3.76 (s, 3H), 2.31 (t, 2H, J = 7.4 Hz), 1.58–1.31 (m, 4H), 0.93 (t, J = 6.6 Hz, 3H); ¹³C NMR δ u: 28.1, 21.2, 20.3, d: 50.3, 12.1; HRMS Calcd for C₇H₁₂O₂N₂ 156.1845 (128.1711 loss N₂), obsd 128.1716. Anal. Calcd for C₇H₁₂O₂N₂: C, 53.83; H, 7.74. Found: C, 53.88; H, 7.81.

Methyl 2-diazohydrocinnamate **2f** (160 mg, 84% yield) as a yellow oil:⁷ TLC $R_f = 0.31$ (95% H/EtOAc); ¹H NMR δ 7.22–7.35 (m, 5H), 3.78 (s, 3H), 3.63 (s, 2H); ¹³C NMR δ u: 164.2, 135.6, 27.8 d: 127.3, 126.8, 126.4, 125.6, 50.5; IR 1730, 1598, 1495, 1453 cm⁻¹; HRMS calcd for C₁₀H₁₀O₂N₂ 190.2016 (162.1882 loss N₂), obsd 162.1884. Anal. Calcd for C₁₀H₁₀O₂N₂: C, 63.15; H, 5.30. Found: C, 63.17; H, 5.37.

Ethyl 2-diazohydrocinnamate **2g** (165 mg, 81% yield) as a yellow oil:⁷ TLC $R_f = 0.33$ (95% H/EtOAc); ¹H NMR δ 7.22–7.35 (m, 5H), 4.24 (q, J = 7.2 Hz, 2 H) 3.63 (s, 2H), 1.28 (d, J = 7.2 Hz, 3H); ¹³C NMR δ u: 163.3, 135.7, 59.4, 27.8 d: 127.2, 126.8, 126.4, 125.6, 13.0; HRMS calcd for C₁₁H₁₂O₂N₂ 204.2285

 $(176.2151\ loss\ N_2),$ obs
d176.2158. Anal. Calcd for $C_{11}H_{12}O_2N_2:$ C, 64.69; H, 5.92. Found: C, 64.77; H, 6.00.

Isopropyl 2-diazohydrocinnamate **2h** (181 mg, 83% yield) as a yellow oil: TLC $R_f = 0.36$ (95% H/EtOAc); ¹H NMR δ 7.22–7.35 (m, 5H), 5.11 (m, J = 6.2 Hz, 1 H) 3.62 (s, 2H), 1.25 (d, J = 6.2 Hz, 6H); ¹³C NMR δ u: 161.1, 135.8, 27.8 d: 127.2, 126.8, 126.4, 125.5, 66.9, 20.5; HRMS calcd for C₁₂H₁₄O₂N₂ 218.2554 (190.2420 loss N₂), obsd 190.2421. Anal. Calcd for C₁₂H₁₄O₂N₂: C, 66.04; H, 6.47. Found: C, 66.10; H, 6.53.

tert-Butyl 2-diazohydrocinnamate **2i** (188 mg, 81% yield) as a yellow oil: TLC $R_f = 0.40$ (95% H/EtOAc); ¹H NMR δ 7.22–7.35 (m, 5H), 3.58 (s, 2H), 1.48 (s, 9H); ¹³C NMR δ u: 167.4, 136.3, 79.8, 27.8 d: 127.2, 126.8, 126.4, 125.5, 26.8; HRMS calcd for C₁₃H₁₆O₂N₂ 232.2822 (204.2688 loss N₂), obsd 204.2688. Anal. Calcd for C₁₃H₁₆O₂N₂: C, 67.22; H, 6.94. Found C, 67.29; H, 7.03.

Amine 5. Methyl 2-diazohydrocinnamate (190 mg, 1.0 mmol) in 10 mL of dry dichloromethane was added over 1 h to a solution of rhodium(II) octanoate dimer (0.4 mg, 5 mol %) and *p*-anisidine (123 mg, 1.0 mmol) in 10 mL of dry dichloromethane at 25 °C. The mixture was concentrated and chromatographed to give the amino ester 5 (239 mg, 84% yield) as an oil: TLC $R_f = 0.12$ (95% H/EtOAc); ¹H NMR δ 7.22–7.35 (m, 5H), 6.75 (d, J = 9.0 Hz, 2H), 4.27 (t, J = 6.3 Hz, 1H), 3.73 (s, 3H), 3.64 (s, 3H), 4.27 (dd, J = 3.2, 6.3 Hz, 2H); ¹³C NMR δ u: 172.4, 151.3, 138.9, 134.9, 37.4 d: 127.7, 126.9, 125.4, 113.7, 113.4, 57.4, 54.1, 50.4; IR 1738, 1619, 1513, 1453 cm⁻¹; HRMS calcd for C₁₇H₁₉O₃N: C, 71.56; H, 6.71. Found: C, 71.64; H, 6.76.

Amine 6 (228 mg, 76% yield) as an oil: TLC $R_f = 0.19$ (95% H/EtOAc); ¹H NMR δ 7.15–7.28 (m, 5H), 6.77 (d, J = 9.2 Hz, 2H), 6.69 (d, J = 9.2 Hz, 2H), 4.45 (t, J = 7.5 Hz, 1H), 3.72 (s, 3H), 3.62 (s, 3H), 3.25 (dd, J = 7.0, 14.8 Hz, 1H), 3.04 (dd, J = 8.0, 14.0 Hz, 1H), 2.85 (s, 3H); ¹³C NMR δ u: 170.9, 151.2, 142.8, 136.5, 34.0 d: 127.5, 127.3, 126.9, 125.0, 114.8, 112.9, 64.1, 54.1, 50.2, 32.5; IR 1735, 1604, 1512, 1454 cm⁻¹; HRMS calcd for C₁₈H₂₁O₃N 299.3696, obsd 299.3700. Anal. Calcd for C₁₈-H₂₁O₃N: C, 72.22. H, 7.07. Found: C, 72.23; H, 7.09.

Alkene 7 (160 mg, 99% yield) as an oil: TLC $R_f = 0.32$ (95% H/EtOAc); ¹H NMR δ 7.58 (d, J = 7.4 Hz, 2H), 7.22–7.39 (m, 3H), 6.95 (d, J = 12.7 Hz, 1H), 5.95 (d, J = 12.7 Hz, 1H), 3.71 (s, 3H); ¹³C NMR δ u: 165.1, 133.2, d: 141.8, 128.2, 127.6, 126.5, 117.8, 49.9; IR 1710, 1630, 1430 cm⁻¹; HRMS calcd for C₁₀H₁₀O₂: C, 74.06; H, 6.21. Found: C, 74.11; H, 6.35.

Ether 8 (183 mg, 64% yield) as an oil: TLC $R_f = 0.31$ (95% H/EtOAc); ¹H NMR δ 7.20–7.36 (m, 5H), 6.77 (d, J = 2.4 Hz, 4H), 4.47 (dd, J = 4.5, 6.8 Hz, 1H), 3.77 (s, 3H), 3.76 (s, 3H), 3.13 (dd, J = 4.5, 13.9 Hz, 1H), 2.96 (dd, J = 6.8, 13.9 Hz, 1H); ¹³C NMR δ u: 173.1, 152.2, 148.0, 134.7, 39.1 d: 127.9, 127.8, 127.1, 126.9, 125.4, 114.5, 113.3, 69.7, 54.2, 51.0; IR 1736, 1604, 1510, 1440 cm⁻¹; HRMS calcd for C₁₇H₁₈O₄: C, 71.31; H, 6.34. Found: C, 71.33; H, 6.38.

Sulfide 9 (169 mg, 62% yield) as an oil: TLC $R_f = 0.32$ (95% H/EtOAc); ¹H NMR δ 7.16–7.44 (m, 10H), 3.90 (t, J = 6.4 Hz, 1H), 3.57 (s, 3H), 3.17 (dd, J = 9.6, 14.2 Hz, 1H), 3.07 (dd, J = 6.4, 14.2 Hz, 1H); ¹³C NMR δ u: 170.5, 136.1, 36.5 d: 131.7, 131.6, 131.5, 127.9, 127.8, 127.7, 127.6, 127.5, 127.0, 126.9, 126.8, 126.6, 125.5, 125.4, 50.6; IR 1951, 1694, 1583, 1478, 1440 cm⁻¹; HRMS calcd for C₁₆H₁₆O₂S 272.3678, obsd 272.3682. Anal. Calcd for C₁₆H₁₆O₂S: C, 70.56; H, 5.92. Found: C, 70.61; H, 6.29.

Acknowledgment. We thank DuPont Agricultural Products for financial support of this work.

Supporting Information Available: General experimental procedure and spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JO0480110